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ABSTRACT 
 
Several different approaches to shape optimization are 
explored to identify hypersonic aeroshell shapes that 
will increase landed mass capability by maximizing 
drag-area for a specified lift-to-drag ratio. The most 
basic approach manipulates standard parameters 
associated with analytic aeroshell shapes like the 
sphere-cone and ellipsled. More general approaches 
manipulate the control points of a spline curve or 
surface. The parametric polynomial formulations of the 
Bezier and B-spline curves and surfaces are employed 
due to their desirable properties in shape design. 
Hypersonic aerodynamic analyses are carried out using 
Newtonian flow theory panel methods. An integrated 
optimization environment is created, and a variety of 
optimization methods are applied. In addition to a lift-
to-drag ratio constraint, size constraints are imposed on 
the aeroshell, as determined by payload volume 
requirements and launch vehicle shroud size 
restrictions. Static stability and center-of-gravity 
placement required to achieve hypersonic trim are also 
considered during optimization. An example case is 
presented based on the aeroshell for the Mars Science 
Laboratory mission. 
 
1. INTRODUCTION 
 
1.1 Objective 
In many entry, descent, and landing (EDL) missions, 
aeroshell shapes are designed to achieve a specified lift-
to-drag ratio (L/D) with a maximum drag-area (CDA). 
Such aeroshells take advantage of increased capabilities 
due to lift without sacrificing their ability to decelerate 
safely and effectively prior to terminal descent and 
landing. These aeroshell shapes can be determined 
using an integrated optimization environment which 
performs shape design based on computation of 
hypersonic aerodynamics. 
 
Various methods of shape representation and 
manipulation exist, many born out of computer-aided 
geometric design (CAGD) theory. Parametric spline 
formulations have been shown to be very powerful for 
shape design and optimization since complex shapes 
can be generated with a relatively small number of 
control points or design variables. Selection of the 
appropriate shape representation and manipulation 

technique is critical for effective shape design and 
optimization. 
 
1.2 Background and Motivation 
 
Aeroshells are designed to deliver payloads safely 
through a planetary atmosphere, protecting the payload 
from the high aerodynamic heating and loads 
encountered during EDL. An aeroshell generally 
consists of a forebody which faces the flow and a 
backshell which completes the encapsulation of the 
payload. The specific shape of a particular aeroshell is 
driven by EDL performance requirements and 
thermal/structural limitations. Four different aeroshell 
shapes are shown in Fig. 1: the Viking-era 70° sphere-
cone, the Mars Microprobe, the Aeroassist Flight 
Experiment (AFE), and a swept biconic design. This 
diversity in configurations is a direct result of differing 
mission and flight systems requirements – that is, form 
has followed function in every case. 
 

 
 

 
 

Fig. 1. Various aeroshell shapes [1, 2, 3, 4] 
 
Fundamentally, CDA represents the amount of drag 
force that an aeroshell is capable of generating at a 
given free-stream condition (D/q∞). During the 
hypersonic EDL phase, this drag force provides the 
means to decelerate, implying that CDA should be 
maximized for a given system mass (m). The ballistic 
coefficient is an aeroshell performance parameter that 
embodies this principle, relating inertial and drag forces 
as shown in Eqn 1. 
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A higher β (high mass per unit drag-area) causes EDL 
events to occur at lower, denser portions of the 
atmosphere, reducing landed elevation capability and 
timeline margin. Additionally, peak dynamic pressure, 
heat rate, and integrated heat load are all higher, causing 



an increase in the thermal and structural loads that the 
entry system must be designed to accommodate. 
 
Another important aeroshell performance parameter is 
the L/D of the aeroshell. A body of revolution, 
symmetric about its forward axis, will have an L/D of 
zero while flying at a 0° angle of attack (AOA or α). A 
body of revolution flying at a non-zero AOA, or an 
asymmetric body, however, can produce a non-zero 
L/D. Motivations for achieving a non-zero L/D 
aeroshell shape include: 
• To relax the allowable approach navigation 

requirements (i.e., enabling a larger entry corridor). 
• To reduce the deceleration loads. 
• To mitigate atmospheric density and wind 

uncertainties. 
• To improve landing accuracy. 
• To increase parachute deployment altitude, 

enabling a higher surface elevation landing site or 
adding timeline margin. 

• To execute a plane change or to provide a 
crossrange capability. 

While a non-zero L/D has distinct advantages, care must 
be taken not to shape the aeroshell such that L/D is 
created at the expense of reducing CDA and therefore 
increasing β. This risk can be seen more clearly in Eqn. 
2 where L/D is written in terms of CDA. 
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With these principles in mind, an ideal aeroshell shape 
would achieve a specified L/D, while maximizing CDA 
and thereby minimizing β. This enables the aeroshell to 
perform as needed while sacrificing as little critical 
drag-area as possible – preserving its capability to 
deliver a payload to the planetary surface safely and 
effectively. 
 
2. METHODOLOGY 
 
This work is divided into three main components: 
hypersonic aerodynamic analysis, shape representation 
and manipulation, and shape optimization. The 
following sections detail each component and discuss 
how these components were integrated to create the 
capability to perform aeroshell shape optimization. 
 
2.1 Hypersonic Aerodynamics 
 
The Newtonian impact model for hypersonic flow 
allows aerodynamics to be determined from shape 
alone, independent of any flow parameters [5]. The 
coefficient of pressure (Cp) is computed based on the 
orientation of the surface, indicated by the unit surface 
normal vector (n), relative to the free-stream flow 
velocity (V∞), as written in Eqn. 3. 
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For a complex geometry, the entire body surface can be 
divided into panels and the Cp can be determined for 
each of these panels by knowing only their associated 
normal vector (see Eqn. 3). With the pressure 
distribution determined over the entire body, the forces 
and moments can be resolved through integration over 
the surface area. 
 
Routines were coded in MATLAB to determine the 
aerodynamic parameters for a given shape. A matrix, 
containing the points that represent the aeroshell shape 
is input, along with AOA. Based on these inputs, a 
surface of panels is created. The vectors along the sides 
of the panels are used to determine the panel’s normal 
vector using the cross product operation, and then the 
Cp for the panel is computed via Eqn. 3. Finally, the 
aerodynamic forces and moments are determined using 
the resulting pressure distribution and panel areas. 
Sideslip is not modeled; aeroshells are only allowed to 
vary in AOA. In order to maintain trim and stability 
outside of the AOA plane, aeroshells are required to be 
symmetric across the AOA plane, causing the rolling 
and yawing moments to be zero for all angles of attack. 
 
In locating the center of gravity (CG) of the aeroshell, a 
uniform packaging density is assumed, which 
effectively places the CG at the volume centroid of the 
aeroshell. The CG offset required to trim an aeroshell is 
determined based on the computed forces and moments 
about this centroid. Because this CG offset is achieved 
by shifting the payload, it is generally best to keep the 
CG offset as small as possible to permit reasonable 
packaging configurations. 
 
To be statically stable, an aeroshell must experience a 
restoring moment when disturbed from the trim AOA 
(i.e., dCm/dα < 0). Computationally, static stability is 
assessed using a finite difference calculation of the 
moments about the offset CG to calculate this 
derivative. To maximize static stability, this derivative 
must be as large a negative number as possible. 
 
It should be noted that the scope of this study does not 
encompass aerothermodynamic considerations that also 
affect aeroshell design. This includes the blunting of the 
aeroshell nose and shoulder that would be required in 
order to reduce localized heating. Inviscid Newtonian 
flow theory is most appropriate in the design of blunt, 
hypersonic bodies, for which pressure drag dominates 
over viscous drag. Additionally, while modified 
Newtonian flow theory offers improvements in the 
accuracy of computed hypersonic aerodynamics for 
blunt bodies, the inclusion of Cp,max as parameter would 
simply scale the results uniformly, resulting in the same 



optimized shape with different absolute values for the 
aerodynamic parameters. Straight Newtonian theory 
(Cp,max = 2) has thus been used here.  
 
2.2 Shape Representation and Manipulation 
 
2.2.1 Analytic Shapes 
 
Analytic shapes offer the ability to define an aeroshell 
shape in terms of a few geometric parameters, reducing 
the number of design variables for optimization while 
allowing for smooth, manufacturable, and realistic 
shapes to be designed and analyzed. The main 
drawback to this approach is that aeroshell shapes are 
inherently restricted to a certain family, greatly limiting 
the variety and generality of possible designs. Two 
analytic shape families are explored in this work: the 
sphere-cone and the ellipsled. 
The sphere-cone is parameterized in terms of four 
design variables: the nose radius (rn), cone angle (θ), 
maximum diameter (D), and the AOA (α), as shown in 
Fig. 2. A representative sphere-cone aeroshell with its 
Newtonian pressure distribution is also shown in this 
figure. 
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Fig. 2. Sphere-cone aeroshell shape 

 
The ellipsled is an analytic aeroshell shape composed of 
two half-ellipsoids with a cylindrical backshell. It is 
parameterized in terms of six design variables: the top 
nose radius (rn,upper), bottom nose radius (rn,lower), width 
(w), nose length (Ln), body length (Lbody), and the AOA 
(α). These parameters are depicted in Fig. 3. A 
representative ellipsled aeroshell is also shown with the 
associated Newtonian pressure distribution in this 
figure. 
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Fig. 3. Ellipsled aeroshell shape 

 
2.2.2 Surfaces of Revolution 
 
To expand the range of possible shapes, forms with 
increasing levels of geometric control are implemented. 
The first improvement is to examine aeroshells 
represented as surfaces of revolution (SORs). An axial 
profile is first created from a series of control points, 
which then define a curve based on a chosen 
representation. That axial profile is rotated about the 
centerline to form an axisymmetric surface. While 
SORs can be used to represent analytic shapes that are 
axisymmetric, such as the sphere-cone, they also allow 
a broad range of other, non-analytic shapes. The 
limitation of the SOR approach is that all shapes 
generated are axisymmetric. 
 
Each SOR representation generates an axial profile 
based on the positioning of control points. The control 
points, along with the AOA, are the design variables 
used for shape optimization. The control points can be 
allowed to vary with either one or two degrees of 
freedom (1-DOF or 2-DOF), dictating the number of 
design variables. For the 1-DOF case, the axial 
positions of the control points are fixed to a cross-
section and the only DOF for each point is the radial 
direction. This arrangement is shown in Fig. 4. 
 

 
Fig. 4. 1-DOF control point profile 

 
In the 2-DOF case, the control points are also allowed 
to vary axially, but only within defined bounds. This 
limited range of motion prevents control points from 
crossing and producing twisted shapes. The 2-DOF 
approach allows for a wider variety of axial profiles, 
increasing the size of the design space. This 
arrangement is shown in Fig. 5. 
  

 
Fig. 5. 2-DOF control point profile 

 
Note that as shown in these figures, either case requires 
a completely fixed point at the nose of the SOR and an 
axially-fixed point at the end of the SOR. This ensures 
the generation of a closed body with a specified length. 
 
Once control points are positioned, a specific curve 
representation describes the SOR profile. Several 
different methods for curve representations were 



investigated: the direct-mesh, Bezier curve, and B-
spline curve representations. 
 
The most basic method for generating axial profiles is a 
direct-mesh approach. The profile is represented by a 
linear interpolation of the control points, as illustrated in 
Fig. 6. 
 

 

 
Fig. 6. 2-DOF direct-mesh profile and SOR 

 
The direct-mesh SOR is an intuitive choice because the 
profile interpolates the control points. However, one 
disadvantage of this approach is that the linear 
interpolation does not result in smooth aeroshell 
profiles, which may be undesirable for shape design and 
optimization. In order to approximate a smooth profile, 
a large number of control points is needed, a 
circumstance which becomes computationally 
burdensome for optimization routines. This faceting 
along the profile is apparent in Fig. 6. In order to allow 
for smooth profiles, without adding a large number of 
control points, a more general curve representation is 
required. 
 
To expand the options for representing aeroshell 
geometries, it is advantageous to model the axial profile 
using a curve form which is smooth and continuous. 
Additionally, it is preferable to use a profile which is 
described in the form of a function. The equations for 
curves can be expressed explicitly or implicitly, but the 
preferred representation for numerical computation is in 
the parametric form. A parametric curve is represented 
in vector form as in Eqn. 4. 
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The parameter u is bounded by umin and umax. Because 
they have the ability to represent bounded and closed 
curves, parametric curves avoid many of the problems 
associated with the explicit and implicit forms. 
 
Bezier curves are one formulation of parametric curves 
that are defined by weighting the given control points 
with parametric basis functions [6]. The first and last 
control points are interpolated by the curve, while the 
intermediate points are approximated. Additionally, the 
ends of the Bezier curve are tangent to the first and last 

legs of the control polygon formed by the control 
points. A Bezier curve with (n+1) control points is 
defined by a polynomial of degree n, calculated using 
Eqn. 5. 
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Here, 0 ≤ u ≤ 1, where C(u) is a point on the curve and 
Pi is the vector location of a control point. Bi,n(u) are the 
nth-degree Bernstein polynomials which serve as the 
blending functions that weight the influence of each 
control point. These basis functions are calculated using 
Eqn. 6. 
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An advantage of using the Bezier formulation is the 
convex hull property, which ensures that the curve will 
lie entirely within the polygon created by the control 
points. Additionally, the variation-diminishing property 
dictates the maximum amount of curve oscillation 
within the convex hull. Given these two properties, the 
designer can readily predict the shape of a curve based 
on its control polygon. 
 
Because the degree of a Bezier curve is directly linked 
to the number of control points, profiles with many 
control points require higher-order curves and become 
costly to evaluate. This trouble is avoided by creating 
composite curves from several lower-order curves. 
 

 

 
Fig. 7. 2-DOF Bezier curve profile and SOR 

 
In this work, cubic Bezier curves were used to model 
the SORs since cubic curves offer a good degree of 
flexibility with low computational cost. In order to 
maintain continuity between two curves, the end control 
point of the first curve and the starting control point of 
the second curve must be coincident. Furthermore, to 
maintain a smooth transition, continuity of slope is 
required at this junction. This second condition requires 
that the coincident control vertex and the control points 
on either side be co-linear, as illustrated in Fig. 7 for a 



composite cubic Bezier curve profile. The SOR 
generated using this profile is also shown in Fig. 7. 
 
In terms of programming and manipulating continuous 
composite Bezier curves, the requirement of co-linear 
control points becomes tedious as the number of control 
points increases. Another limitation of the Bezier curve 
formulation is that changes to individual control points 
impact the entire curve (i.e., have global impact). To 
perform local shape design, it is helpful to employ a 
curve representation in which changes to an individual 
control point only influence a limited portion of the 
curve. 
 
The B-spline is another parametric curve formulation 
which is actually a generalization of the Bezier curve 
formulation. As such, B-splines share the same 
desirable properties – particularly the convex-hull and 
variation-diminishing properties. The B-spline 
formulation is more complicated than the Bezier, with 
the introduction of knots, which essentially represent 
the parameter values at which composite curves 
connect. In order to maintain a closed-forebody 
aeroshell with a defined length, these knots can be fixed 
such that the first and last control points are interpolated 
and the curve is tangent to the first and last legs of the 
control polygon – similar to the Bezier formulation. 
This is achieved though multiplicity in knot values at 
the first and last control vertices. 
 
Unlike the Bezier formulation, the degree of a B-spline 
curve is not strictly linked to the number of control 
points. However, the degree is limited by the number of 
control points as follows: (n+1) control points define a 
polynomial of degree (k-1), with (k-1) < (n+1). When k 
= (n+1), the B-spline formulation reduces to the Bezier 
formulation. The parametric equation for a B-spline is 
given by Eqn 7. 
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Here, 0 ≤ u ≤ umax, and Ni,k(u) are the B-spline basis 
functions, given by the recursive definition in Eqn. 8. 
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The values of the knots, ti, are stored in a knot vector. 
B-splines offer local control since they are essentially 
composed of composite curves, within which the 
control points are limited to influence. Additionally, 
continuity between composite curves is now automatic 

and no longer needs to be explicitly handled through the 
manipulation of control points. Specifically, cubic B-
splines are curvature continuous. 
 
2.2.3 Spline Surfaces 
 
While the SOR representation of aeroshell geometries 
offers significantly more options for shape design than 
analytic shapes, all aeroshell shapes will be 
axisymmetric. In order to allow asymmetric aeroshell 
shapes (across the AOA plane), a general spline surface 
representation is required. 
 
The parametric curve theory previously discussed is 
directly extensible to bi-parametric surface theory. 
Considering the advantages of the B-spline formulation 
noted when designing with parametric curves, a bi-
parametric B-spline surface formulation was selected 
for implementation. These advantages include the fact 
that the number of control points is independent of the 
degree of the curve, and maintaining continuity does not 
require explicit consideration of control point 
placement. These advantages apply in both parametric 
directions. A general bi-parametric surface is 
represented by Eqn 9. 
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Here, umin ≤ u ≤ umax and wmin ≤ w ≤ wmax. Analogous to 
the B-spline curve profile, the B-spline surface 
employed here is formulated to be clamped at its edges 
and has a uniform knot vector. 
 
Shifting from a SOR to a B-spline surface formulation 
introduces several additional considerations. First, the 
control points defining the surface must each now be 
confined to a three-dimensional range of coordinates in 
order to prevent twisted shapes from being generated. 
This is a natural extension of the axial bounds placed on 
the control points used to generate axial profiles for the 
SORs. A cylindrical coordinate representation is used to 
position B-spline surface control points which extend 
radially from the apex of the aeroshell forebody to 
generate convex profiles. A B-spline surface is therefore 
generated by multiple, independently-defined axial 
profiles rather than a single profile as in the SOR case. 
The edge control points of the control mesh must also 
be confined to a single plane so that the generated 
aeroshell forebody will have a planar back-face. This 
planar back-face was generated naturally by the SOR 
representation. The cylindrical coordinate 
representation enables the size constraint of a circular 
envelope to be applied naturally as a side constraint 
(i.e., maximum radius) on control point radial positions. 
Thus, the constraint on aeroshell packaging within the 
launch vehicle shroud can easily be accommodated via 



the cylindrical coordinate representation. An arbitrary 
B-spline surface generated based on these constraints is 
shown in Fig. 8. 
 

   
Fig. 8. B-spline surface front, oblique, and side views 

 
2.3 Optimization 
 
Optimization was carried out using a variety of 
techniques. The objective of the optimization is to 
maximize the aeroshell CDA while achieving a specified 
L/D. The design variables are the locations of the 
control points of the B-spline curve or surface and the 
AOA. The range of possible solutions is limited by 
dimensional and volumetric constraints. Additionally, 
terms that represent the CG offset and static stability are 
added to the objective function to minimize the CG 
offset required for static trim and maximize the static 
stability of the aeroshell. 
 
A suitable optimization algorithm must be capable of 
exploring the large and complex design space that is 
likely to be highly nonlinear. Because aerodynamic 
analyses are rapid, a genetic algorithm (GA) is an ideal 
candidate optimizer for this problem. Genetic 
algorithms are in the family of zeroth-order 
optimization techniques in which the search for the 
optimum does not rely on the calculation of derivatives.  
 
The main advantage of GAs is that they are able to find 
a global optimal solution for complex design space 
topologies with many local optima, while gradient-
based methods may get stuck in any one of a number of 
local optima. Constraints are applied to GAs through 
the use of penalty functions. Penalties are applied to the 
fitness values for solutions lying outside of the feasible 
solution space. In this analysis, the feasible design 
space is defined by the geometric constraints of the 
aeroshell, including the size and volume limits, as well 
as the required hypersonic L/D. Side constraints are 
placed on the design variables to limit their ranges and 
obtain realistic aeroshell shapes from the spline curve 
and surface formulations.  
 
Although GAs are capable of searching the entire 
solution space to find a global optimum, there are 
difficulties associated with determining the exact 
location of the maximum because genetic algorithms 
operate randomly and over a discretized design space. 
This problem can be solved as a hybrid optimization 
problem by pairing the GA with a gradient-based 
algorithm, such as the sequential quadratic 

programming (SQP) or method of feasible directions 
(MOFD) techniques. Gradient-based methods allow 
close convergence on a single-valued optimum solution. 
 
The Phoenix Integration ModelCenter software is used 
to create the environment for aeroshell shape 
optimization. The built-in optimizer modules are used, 
along with MATLAB modules that were developed to 
perform shape generation and aerodynamic analyses. 
Once the parameters are defined for the optimization 
modules, and all input and output variables are 
appropriately linked, the hybrid optimizer can be 
executed. Due to the stochastic nature of the GA, 
multiple runs are performed in order to converge onto 
the optimum aeroshell shape. 
 
3. VALIDATION 
 
Validation of the tools within the optimization 
environment was performed by using shape 
optimization for a body with fixed length and volume. 
Based on supersonic slender body theory, the drag 
coefficient is independent of Mach number if the body 
has a pointed nose and ends in a cylindrical portion [7]. 
The drag is minimized if its area distribution, or profile, 
is that of a von Karman ogive. Given a base area and 
length, this profile can be determined. Comparison of a 
body optimized for minimum drag to the von Karman 
ogive quantifies the performance of the optimization 
environment. 
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Fig. 9. Comparison of drag-minimized body profile to 

von Karman ogive profile 
 
The profile of a 15° sharp cone was generated using a 
B-spline curve. Starting with this profile, the optimizer 
was programmed to minimize CDA, subject to a fixed 
volume and length, by varying the radial position of 
axially-fixed control points. The length and the base 
area of the optimized shape then uniquely defined an 
analytic von Karman ogive profile. The optimized 
profile is compared to the resulting von Karman ogive 
profile in Fig. 9, showing that the integrated 
optimization environment performed well by rapidly 



designing a B-spline profile that very closely matches 
the profile of the von Karman ogive. 
 
4. EXAMPLE APPLICATION 
 
The Mars Science Laboratory (MSL) aeroshell was 
chosen as a baseline with which to explore the 
capabilities developed in this work. Packaging and EDL 
performance constraints were derived from published 
MSL geometry and mission requirements [8]. 
 

 
 

Parameter Value 

CDA 25.56 m2 
(CmAl)α -12.75 m3/rad 
CG offset 12.63 cm 
Merit, f 25.67  

Fig. 10. Analytic approximation to the MSL aeroshell, 
αtrim = -15.5° 

 
An analytic, MSL-derived aeroshell is shown in Fig. 10 
along with parameters computed from the hypersonic 
aerodynamic analysis. It has a 70° sphere-cone forebody 
with a conical backshell, designed to fly at a non-zero 
AOA, thereby producing an L/D of 0.24. There is a 
maximum-diameter constraint of 4.5 m dictated by the 
diameter of the launch vehicle fairing and the size of the 
integration and test facilities at the Jet Propulsion 
Laboratory. An equivalent aeroshell volume 
requirement of approximately 18 m3 was determined 
from the present MSL design. A maximum-length 
constraint was determined based on the length of the 
MSL aeroshell, with a forebody length of 
approximately 0.75 m and a backshell length of 
approximately 2 m. Thus, an optimized aeroshell is 
required to fit within a 4.5-m diameter by 2.75-m high 
cylinder, have a volume of 18 m3, and achieve an L/D 
of 0.24. All of these constraints are to be met while 
maximizing a multi-objective merit function comprised 
of a weighted sum of CDA and terms to represent static 
stability and CG offset as shown in Eqn. 10. 
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The wi terms are the weights used to achieve a certain 
design objective. For this example, the weights were set 
equal for each term in the merit function, after each 
objective was scaled so that its contribution to the merit 
function was of the same order of magnitude. Two 
different shape representations were explored: cubic B-

spline curve profiles to generate SORs and bi-cubic B-
spline surfaces.  
 
The cubic B-spline curve profile used here is defined by 
15 geometric variables, which, including AOA, gives a 
total of 16 design variables for a given aeroshell shape. 
There are five 2-DOF control points and a sixth 1-DOF 
control point that defines the forebody-backshell 
interface. The aeroshell radius, forebody length, 
backshell length, and backshell angle are the other four 
geometric design variables. One resulting design is 
shown in Fig. 11. 
 

 
Parameter % Change 
CDA +4.70% 
(CmAl)α +12.90% 
CG offset -20.60% 
Merit, f +8.46%  

Fig. 11. B-spline SOR aeroshell, αtrim = -14.8° 
 
This result highlights the fundamental trade between 
drag and stability in aeroshell shape design. The CDA is 
slightly larger than that of the analytic aeroshell, due to 
an increase in bluntness of the forebody. However, this 
increase in drag-area comes at the expense of static 
stability (recall that to maximize static stability, this 
derivative must be as large a negative number as 
possible). An additional advantage of this non-analytic 
shape is that the required CG offset is smaller than that 
required for the analytic aeroshell since the blunter 
forebody produces smaller pitching moments. 
 

 
Parameter % Change 
CDA +3.15% 
(CmAl)α +12.31% 
CG offset -99.63% 
Merit, f +46.08%  

Fig. 12. B-spline surface aeroshell, αtrim = -13.6° 
 
In the treatment of bi-cubic B-spline surfaces, control 
point profiles are defined at equal angular intervals, 
radiating from an apex that is positioned vertically 



along the axis of symmetry. The resulting shape is 
symmetric across the AOA plane to prevent any rolling 
or yawing moments, but it is, in general, asymmetric 
across the horizontal plane. For radial profiles placed 
45° apart with six control points along each profile, 
there are a total of 40 design variables after convexity 
constraints are taken into account. This tally of design 
variables also includes the AOA, backshell length, 
backshell angle, apex location, and forebody length. 
One resulting design is shown in Fig. 12. 
 
Once again, the fundamental trade between drag and 
stability is evident as drag-area has been increased at 
the expense of static stability. While this aeroshell 
shows similar trends to that of the SOR aeroshell, the 
optimizer has exploited one capability of the 
asymmetric forebody. The forebody volume has been 
shifted off the centerline, enabling this aeroshell to 
achieve static trim with very little CG offset. Note that 
while the packaging volume has been kept constant, the 
“quality” of packaging volume should be considered 
here since this shallow backshell might prohibit certain 
internal payload configurations. 
 
5. CONCLUSIONS AND FUTURE WORK 
 
A capability to perform aeroshell shape optimization 
based on hypersonic aerodynamics has been developed. 
Several different methods for shape representation and 
manipulation have been investigated, including analytic 
and synthetic shapes. The possible geometry of analytic 
shapes is limited to certain families of shapes. The 
direct-mesh representation increases the flexibility of 
aeroshell designs but requires a large number of control 
points to approximate a smooth body. Synthetic, or 
spline, curve and surface formulations are used to 
improve modeling of the aeroshell shapes because they 
allow a large diversity of smooth-bodied shapes while 
maintaining a relatively low number of control points, 
or design variables, for optimization. 
 
Two different types of synthetic curve formulations 
were considered: Bezier and B-spline. The B-spline 
formulation was found to be superior to the composite 
Bezier formulation. In order to maintain continuity 
between composite Bezier curves or surfaces, the 
coincident and adjacent control points are constrained to 
maintain certain spatial relationships. Maintaining these 
continuity conditions becomes cumbersome, but is 
automatic when using the B-spline formulation. The B-
spline curve and surface formulations, while more 
complex in their underlying mathematics, are superior 
to the Bezier formulations because they do not 
explicitly require complex continuity constraints. This 
feature allows the aeroshell shape generation and 
analysis codes to be more flexible in optimization. 
 
A hybrid optimization routine that combines a GA and a 
gradient-based algorithm was used to determine the 

optimal aeroshell shape. The combination of 
optimization algorithms improves the user’s ability to 
avoid local optima by searching randomly over the 
entire design space. After deriving design constraints 
based on the MSL mission, aeroshell concepts were 
obtained that offer improved drag, stability and CG 
placement relative to the analytic 70° sphere-cone which 
has been employed by all U.S. robotic Mars missions. 
The assessment of these aeroshell shapes also served to 
highlight the fundamental trade between drag and 
stability. 
 
The natural progression for this work is to extend the 
options for shape representation and manipulation to 
rational spline forms, such as non-uniform rational B-
spline (NURBS). This would enable the optimizer to 
explore quadric surfaces and conic profiles with an 
exact representation. Additionally, because Newtonian 
flow theory is only applicable to concave designs, 
clever methods need to be implemented to enforce strict 
concavity for the spline SOR and general spline 
surfaces. Due to the convex hull and variation-
diminishing properties of these spline formulations, 
enforcing concavity can be achieved by generating a 
convex control polygon or mesh. Furthermore, the 
addition of aerothermodynamic constraints and 
considerations for packaging efficiency will add further 
design realism, while thermal protection system sizing 
and structural mass estimation will serve to assess the 
impact of aeroshell shape on total system mass. Various 
multi-objective and multi-disciplinary design 
optimization techniques will be applied to this problem 
to identify aeroshell configurations that are optimal 
from the stand-point of an overall EDL system and 
architecture. 
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